Corneal abnormalities in Pax6+/- small eye mice mimic human aniridia-related keratopathy.
نویسندگان
چکیده
PURPOSE To investigate corneal abnormalities in heterozygous Pax6(+/Sey-Neu) (Pax6(+/-), small eye) mice and compare them with aniridia-related keratopathy in PAX6(+/-) patients. METHODS Fetal and postnatal corneal histopathology, adult corneal thickness, and the distribution of K12-immunostained cells were compared in wild-type and Pax6(+/-) mice. RESULTS Prenatally, the corneal epithelium was thinner in Pax6(+/-) fetuses than wild-type littermates, but the stroma appeared irregular, hypercellular, and thickened. The anterior chamber angle was obliterated, and the iris was hypoplastic from early developmental stages. The adult Pax6(+/-) corneal epithelium was thinner, had fewer layers, and included goblet cells, indicating repopulation from conjunctival epithelium. The ocular surface was often roughened, with epithelial vacuolation and lens tissue within the stroma. The corneal stroma was thicker centrally, with an irregular lamellar alignment. Many adult Pax6(+/-) corneas were vascularized or contained cellular infiltrates, but some remained clear. Corneal degeneration was age-related: Older Pax6(+/-) mice had prominent subepithelial pannus and more goblet cells in the peripheral corneal epithelium. Cytokeratin 12 stained very weakly in the peripheral and superficial corneal epithelium in 12-month-old Pax6(+/-) mice. CONCLUSIONS Corneal abnormalities in Pax6(+/-) mice are similar to those in aniridia-related keratopathy in PAX6(+/-) patients. This extends the relevance of this mouse model of human aniridia to include corneal abnormalities. Incursion of goblet cells suggests impaired function of Pax6(+/-) limbal stem cells, abnormal expression of cytokeratin 12 may result in greater epithelial fragility, and corneal opacities in older mice may reflect poor wound-healing responses to accumulated environmental insults.
منابع مشابه
Cell surface glycoconjugate abnormalities and corneal epithelial wound healing in the pax6+/- mouse model of aniridia-related keratopathy.
PURPOSE Congenital aniridia due to heterozygosity for Pax6 is associated with ocular surface disease, including keratopathy. This study investigated how defects in glycoconjugate component of the cell surface of Pax6+/- could cause the abnormal cellular migration phenotypes associated with the disease. METHODS Immunohistochemistry, lectin-based histochemistry, conventional staining techniques...
متن کاملEffects of Aberrant Pax6 Gene Dosage on Mouse Corneal Pathophysiology and Corneal Epithelial Homeostasis
BACKGROUND Altered dosage of the transcription factor PAX6 causes multiple human eye pathophysiologies. PAX6⁺/⁻ heterozygotes suffer from aniridia and aniridia-related keratopathy (ARK), a corneal deterioration that probably involves a limbal epithelial stem cell (LESC) deficiency. Heterozygous Pax6(+/Sey-Neu) (Pax6⁺/⁻) mice recapitulate the human disease and are a good model of ARK. Corneal pa...
متن کاملCorneal development, limbal stem cell function, and corneal epithelial cell migration in the Pax6(+/-) mouse.
PURPOSE To investigate the etiology of corneal dysfunction in the Pax6(+/-) mouse model of aniridia-related keratopathy. METHODS Mosaic patterns of X-gal staining were compared in the corneal and limbal epithelia of female Pax6(+/-) and Pax6(+/+) littermates, age 3 to 28 weeks, hemizygous for an X-linked LacZ transgene, and Pax6(+/+), LacZ(-)<-->Pax6(+/+), LacZ(+) and Pax6(+/+), LacZ(-)<-->Pa...
متن کاملControl of patterns of corneal innervation by Pax6.
PURPOSE Corneal nerves play essential roles in maintaining the ocular surface through provision of neurotrophic support, but genetic control of corneal innervation is poorly understood. The possibility of a neurotrophic failure in ocular surface disease associated with heterozygosity at the Pax6 locus (aniridia-related keratopathy [ARK]) was investigated. METHODS Patterns of corneal innervati...
متن کاملGenetic dissection of Pax6 dosage requirements in the developing mouse eye.
Haploinsufficiency of the transcription factor Pax6/PAX6 has been implicated in a number of congenital eye disorders in humans and mice, such as aniridia and Small-eye, which affect the development and function of the lens, cornea, anterior eye segment and neuroretina. However, the widespread distribution of Pax6/PAX6 protein within the developing and adult eye preclude the identification and d...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Investigative ophthalmology & visual science
دوره 44 5 شماره
صفحات -
تاریخ انتشار 2003